5 Practical Tips to Improve Your Data Quality

Data quality describes how well your data is able to serve its defined purpose, generally measured in terms of validity, accuracy, consistency, completeness and relevance. In other words, businesses know they have high-quality data when they are able to use it effectively to determine key business decisions. Data is considered “bad” or of “poor quality” when it’s inaccurate, which, unfortunately, is the norm rather than the exception in various industries.

The state of data quality report reveals:

  • 33% of organizations believe they have a lot of bad data
  • 49% point to human error as the main cause of data inaccuracies
  • 89% of the C-suite admit bad data hurt their ability to provide excellent CX

In the United States, bad data cost the economy a whopping $3.1 trillion a year, while organizations’ annual loss on average is at $15 million.

If you’re also experiencing losses due to bad data, here are five tried-and-true tips to help you improve it:

Streamline your approach

Look at how data is collected, processed, stored, consumed and distributed to come up with a streamlined approach. You can choose to work with your existing setups, get completely new ones or create a hybrid solution. The idea is to come up with one that provides visibility into your data, the level of quality, its processes and ownership of said data.

Break down data silos

Having different and separate data silos discourages collaboration between internal and external stakeholders. This can be solved by having a central data repository where users and workflows are defined, and processes and progress are visible. This ensures you’re working with a single source of truth and not multiple sets of the same data.

Automate data onboarding

Building on the previous point, having vast amounts of data in different silos can lead to inaccuracy of published content, which leads to a poor customer experience. To bridge the gap among these silos, companies need to automatically onboard product information from legacy systems, data pools, suppliers, third-party content aggregators and other sources quickly and efficiently. This eliminates errors caused by manual entry and maintenance.

Enforce product data quality checks

Manual quality checks and maintenance is not efficient for large volumes of data. You need to set up data cleansing, standardization, normalization, classification and categorization rules to transform your data so that it is accurate, complete, consistent and up-to-date.

Utilize a version control system

Track and manage all versions of a dataset to create a seamless audit trail for full traceability. With this, you can get rid of redundancies and duplicates to ensure up-to-date, audit-compliant information at all times.

May Arevalo

Marketing Specialist

Latest Posts from the Author: Share this Article:

Related Posts

Data / Master Data
Why MDM is the Cornerstone of a Powerful Enterprise Data Strategy

Why MDM is the Cornerstone of a Powerful Enterprise Data Strategy In the digital age,…

Read Post
Product Experience
7 Keys to Crafting High-Quality Product Content

7 Keys to Crafting High-Quality Product Content Content gets the bulk of attention these days…

Read Post

DE: T +49 8442 9253 800
FR: T +33 1 73 77 56 04
BE: T +32 3 369 37 00
NL: T +31 634185447
USA: T +1 619 736 7469
JP: T +81 3 6880 9116